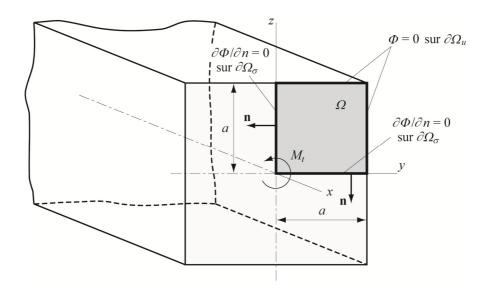
Exercice 1

La torsion uniforme d'une poutre prismatique de longueur unitaire et de section carrée de côté 2a est régie par la forme faible suivante

$$\boldsymbol{\Phi} \in \mathcal{U} : \int_{\Omega} (\nabla \boldsymbol{\Phi})^{\mathrm{T}} \nabla \delta \boldsymbol{\Phi} \, \mathrm{d}y \mathrm{d}z = \int_{\Omega} 2G \theta \delta \boldsymbol{\Phi} \, \mathrm{d}y \mathrm{d}z \quad \forall \, \delta \boldsymbol{\Phi} \in \mathcal{V}$$

$$\mathcal{U} = \mathcal{V} = \{ w(y, z) \mid w(y, z) \in H^{1}(\Omega) ; w(s) = 0, \, \forall \, s \in \partial \Omega_{u} \}$$

où les variables Φ et $\delta\Phi$ dénotent la fonction de contrainte ou d'Airy et sa contrepartie virtuelle, les quantités G et θ désignent respectivement le module de glissement du matériau et l'angle de torsion unitaire, les coordonnées x, y et z correspondent successivement à l'axe de la poutre et aux deux directions principales et la grandeur w est indifféremment la fonction de contrainte Φ ou sa contrepartie virtuelle $\delta\Phi$. La surface $\Omega =]0$, $a[\times]0$, a[de bord $\partial\Omega$ à portion extérieure $\partial\Omega_u$ parcouru par l'abscisse s est, par symétrie du problème, le quart de la section totale. Sur le reste $\partial\Omega_\sigma$ de la frontière, la dérivée de la fonction Φ selon la normale extérieure \mathbf{n} est nulle, de sorte que ce bord n'apparaît pas dans la formulation. Rechercher une solution approchée du problème sur la base d'une discrétisation du domaine Ω en un seul élément fini rectangulaire biquadratique lagrangien à 9 points nodaux en ne calculant que les contributions strictement nécessaires.



Exercice 2

Le moment de torsion M_t appliqué à l'arbre étudié à l'exercice précédent est lié à la fonction de contrainte Φ par la relation suivante

$$M_t = 8 \int_{\Omega} \Phi \, \mathrm{d}y \mathrm{d}z$$

où Ω demeure le quart de l'aire de la section carrée (double symétrie de la section). Déterminer le moment de torsion approché résultant d'une discrétisation du domaine Ω en un seul élément fini rectangulaire biquadratique lagrangien et évaluer l'erreur relative commise par rapport à la valeur exacte de 2,25 $a^4G\theta$, où a est le côté de la section carrée, G dénote le module de glissement et θ désigne l'angle de torsion unitaire.